1. Getting Started

1.1 Launching BlueJ - UML

On Windows and MacOS, extracted the downloaded zip file and run the BlueJ.exe
and BlueJ.app on Windows and MacOS correspondingly .

On Unix systems , installation is required. If you are using ubantu, installation could
be perform by double click the downloaded BlueJ-3.1.4.deb. For others, Run the
installer by executing the following command:

sudo dpkg -i bluej-3.1.4.deb

After installation, run the BlueJ deb package to launch the Blue] UML

1.2 Explore Menus

The typical menus available on the menu bar of an BlueJ - UML window are:

* Project menu
« Edit menu

* Tool menu

* View menu

* Help menu

Menu Description
Name

Project The Project menu allows you to open project for editing, save editor content
and close the opened project so as the Blue] UML. Among the other things, it
also allows you to import existing BlueJ or BlueJ UML projects and create Jar
Files.

Edit The Edit menu allows you to perforfm new class, new package, add class
from file, remove class, new uses arrow and inheritance arrow.

Tool Compliation, rebuild package, reset Vm, use librart class and show use-case
tool could be done using the Tool menu.

View The View menu allows you to show dependency in class diagram, debugger,
terminal and code pad.

Help The Help menu can be used to search helper tips, add BlueJ extension.

2. Working with classes and dependency

2.1 Create BlueJ —-UML Project

To create a project, select New Project from the Project menu. Select the project
location and enter the Project Name. Click “Create” to crete the project.

2.2 Create class

Class could be created through selecting the “new class” menu item in edit menu tab,
the “New Class...” tab on the left hand side and right click on the main window.

[JON BlueJ-UML (2.0.5): Test2
New Class...
| -—>
|
—> Car
-y :int
—_— ~positiony : int
+Car()
Compile +setPosition(position: int) : void
+forward(step: int) : int
New Class... BN
l} New Package... 3R
—
Py

2.3 Remove Class

Class removal could be perform by right click the class and selecting the
“Remove” menu item .

Car
-wheel : Wheel[] new Car()
_:)(:)slir;itony - int Open Editor
. Compile
+Car() Inspect

+setPosition(position: int) : vEEEFPIRINR

? Add Comment

2.4 Compilation

To compile a class, click the Compile button in the editor. To compile a project, click
the Compile button in the project window.

2.5 Edit soure code of a selected class

Double click the class name to open a editor and edit the code directly in the text
editor. Save the changes by clicking “Save” in the “Class” Menu and compile the
code.

& BiueJ CFY Edit Tools Options -9
0 Gar-Tos2

— Reload 2
Compile| |uni 2| [Find...| [Close Source Code BI

Page Setup...
Print... %P

Ja%
* Write Close 3#W ss Car here.

* Eauthor Cyour name) |

* @version (a version number |

*/

public class Car extends hi

{
private int position;

* Constructor for objects of class Car |
. |

public CarQ)
{
position = 0;

blic void setPositionCint position)

~g mm

this.position = position; |
|

blic int forward(int step)

| No changes need t be saved || read-only |

2.6 Edit class attributes and methods

Double click the attributes/methods you would like to edit. The sign character ‘+’
represents public publicity which could also be set to -°, ‘#’, or ’, respectively, for
private, protected, or package visible sharing. Amendment on the parameter type and
return type could also be made. After clicking the “OK” button and compilation, code
will be updated instantly.

@ Edit

Edit uml signature:

—-positions : int

Ca

5 - [Cancel | (O

Changes could also made through correcting the code directly. Changes will be
reflected in class after compilation.

2.7 Create linkage between classes

Class linkages including association, aggregation and composition could be created
between classes. Association and aggregation relationship could be form by clicking
the corresponding arrow button placed on the left hand side and a simple drag-and-
drop operation as display in the follow image. Compile the program and the
corresponding source code will be updated.

Person Car

Linkage could also created through identifying them in source code. Compile the
program and the constructed linkage will be reflected in class diagram.

2.8 Remove linkage between classes

Every linkage in a class diagram could be deleted by right click on it and click on
remove button. Removal of any linkage in a class diagram will also reflect in source
code. The original related source code would be updated to reflect the removal
operation.

Person Car

+invokeCar(car: I @
|

Change Type
Change Role
Change Multipicity

Same as linkage construction, linkage removal could be done by correcting source
code. Corrsponding linkage will be destroy after compliation.

2.9 Editing multiplicities for aggregation and composition

Blue]J-UML shows multiplicity of aggregation and composition. Multiplicities
could be modified by right click the aggregation/ composition and choose the
“Change multiplicites” item. Source code will be corrected after compilation.

Car [] Muplicity

-wheel : Wheel[]
-y :int

-positiony : int Car: Wheel: *
+Car()

+setPosition(position: int) : void

‘ Cancel ’ oK

Multiplicites could also be ammened by changing the cource code directly.
Changes will be reflected on the class diagram after compliation.

New Class... I
/**
* Write a description of class Car here. —-—=>

*

* @author (your name) —> Car
* @version (a version number or a date) -wheel : Wheel[]
*/ .
— -y :int
public class Car ‘ -positiony : int
{
private int positiony; Compile ‘ WY - T
private int y = 1; +setPosition(position: int) : void

private Wheel wheel[] = new Wheel[4];
/**
* Constructor for objects of class Car
&7
public Car(Q) {

T 4
} v WheeT > | friction - nt|

public void setPosition(int position)

this.positiony = position;

}

2.10 Edit role of dependency

Role of dependency could be updated by right click the linkage and select
“Change Role”. Modification will be reflected in souce code after compliation.

[] Role
-w : Wheel[]
-y :int
-positiony : int Car: Wheel: w
+Car()
+setPosition(position: int) :
Cancel OK

Simliarily, updating role of dependency in source code will also update the class
diagram after compliation.

3. Working with Objects

3.1 Create object instance

A key charactertics of BlueJ-UML is that you could directly interact with single

class and execute their public methods instead of just execute a full application.

Objet instance could be create by right click on any class and select “new

ClassName()”.

New Class...

-—>

—>

Compile

BlueJ-UML (2.0.5): Test2

]

Car

-w : Wheel[]

-y l"‘ » // Constructor for objects of class Car
-positiony : int Car()

+Car()

+setPosition(position: int) : void
Name of Instance: car2

Cancel Ok J
o | Wheel]

Car

3.2 execute methods of an object

After created an object, you can execute its public methds. Click with the right

mouse button on the object and a menu with object operations will pop up The

menu shows the methods available for this object and two special operations

provided by the environment.

S inherited from Object >

int forward(int step)
void invokeWheel()
void setPosition(int position)

Inspect
Remove

4. Use-case diagram

BlueJ-UML (2.0.5): Usecase

New Class...
1
Place Order

/ 2
Confirm Order
\ 3 /
Buyer Seller
Invoice Buyer

Send Payment Reminder

Compile

i ool

5. JUnit Test

5.1 Create Junit Test

To create a Junit test, click “new class” and select the type “Unit Test” like the
following image.
® @® BilueJ: Create New Class

Class Name:

Class Type
Class
Abstract Class
Interface
Applet
® Unit Test

Enum

Cancel \ Ok

The unit test class create imported the common Junit library like junit.Test.
Common functions including setUp() and tearDown() are also included in the
create unit test class created.

<<unit test>>
Wheel_Test

+Wheel_Test()
+setUp() : void
+tearDown() : void

A

5.2 Create test method + Record test case

Test method could be created by right click the unit test and select “create test
method” .

wneel
4 | —friction : int

[J New Test Method TR TS
X i Wheel_Test
Specify a name for this test.
Recording will then start. +Wheel_Test()
I |+tearDown() : void A

Cancel OK

Another great function provided by BlueJ-UML is recording a test case. Test case
record will be conducted after creating a test method. Executable code will be
generated for every operation recorded.

& recording

End
. inherited from Object | 2
Cancel

void forward(int step)
int getPositionX() i
int getPositionY()]

-
void invokeWheel()
void setPosition(int X, int y)
Inspect
Remove

Adding test case by writing code are also welcome in Blue]-UML. Changes will be
reflected in class diagram after compliation.

5.3 Run test cases

Click the “Run Tests” to run all the written test cases, or right click the unit test
clas to select run a particular test case.

-'
s <<unit test>>
: | Car_Test
| NON) BlueJ: Test Results
—> 1] 2
¥ Wheel_Test.test_friction (1ms)
EI r"'_ Car_Test.test_backward_2 (1ms)
l Car_Test.test_backward_1 (Oms)
| Car_Test.test_forward_2 (Oms)
Sl I Car_Test.test_forward_1 (3ms)

Runs: 5/5 X Errors: 0 “ Failures: 0 Total Time: 5ms

Run Tests

@ recording

End Show Source

Cancel

